Mobility Mining Using Nonnegative Tensor Factorization

Thumbnail Image
Date
2017
Authors
Nosratabadi,HE
Hadi Fanaee Tork
João Gama
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Mobility mining has lots of applications in urban planning and transportation systems. In particular, extracting mobility patterns enables service providers to have a global insight about the mobility behaviors which consequently leads to providing better services to the citizens. In the recent years several data mining techniques have been presented to tackle this problem. These methods usually are either spatial extension of temporal methods or temporal extension of spatial methods. However, still a framework that can keep the natural structure of mobility data has not been considered. Non-negative tensor factorizations (NNTF) have shown great applications in topic modelling and pattern recognition. However, unfortunately their usefulness in mobility mining is less explored. In this paper we propose a new mobility pattern mining framework based on a recent non-negative tensor model called BetaNTF. We also present a new approach based on interpretability concept for determination of number of components in the tensor rank selection process. We later demonstrate some meaningful mobility patterns extracted with the proposed method from bike sharing network mobility data in Boston, USA. © Springer International Publishing AG 2017.
Description
Keywords
Citation