CAP
Permanent URI for this community
This service develops its activity in the areas of optical sources, optical communications, fiber optic sensors and micro-manufacturing, having facilities for the design and development of electronic systems.
Browse
Browsing CAP by Author "6888"
Results Per Page
Sort Options
-
ItemCharacterization of arsenic in dried baby shrimp (Acetes sp.) using synchrotron-based X-ray spectrometry and LC coupled to ICP-MS/MS( 2018) Diana Filipa Guimarães ; Roberts,AA ; Tehrani,MW ; Huang,R ; Smieska,L ; Woll,AR ; Lin,S ; Parsons,PJ ; 6888The arsenic content of dried baby shrimp (Acetes sp.) was investigated as part of an independent field study of human exposure to toxic metals/metalloids among the ethnic Chinese community located in Upstate New York. The dried baby shrimp were analyzed in a home environment using a portable X-Ray Fluorescence (XRF) instrument based on monochromatic excitation. Study participants had obtained their dried baby shrimp either from a local Chinese market or prepared them at home. The shrimp are typically between 10-20 mm in size and are consumed whole, without separating the tail from the head. Elevated levels of As were detected using portable XRF, ranging between 5-30 µg g-1. Shrimp samples were taken to the Cornell High Energy Synchrotron Source (CHESS) for Synchrotron Radiation µXRF (SR-µXRF) elemental mapping using a 384-pixel Maia detector system. The Maia detector provided high resolution trace element images for As, Ca, and Br, (among others) and showed localized accumulation of As within the shrimp's cephalothorax (head), and various abdominal segments. As quantification by SR-µXRF was performed using a lobster hepatopancreas reference material pellet (NRC-CNRC TORT-2), with results in good agreement with both portable XRF and ICP-MS. Additional As characterization using µX-ray Absorption Near Edge Spectroscopy (µXANES) with the Maia XRF detector at CHESS identified arsenobetaine and/or arsenocholine as the possible As species present. Further arsenic speciation analysis by LC-ICP-MS/MS confirmed that the majority of As (>95%) is present as the largely non-toxic arsenobetaine species with trace amounts of arsenocholine, methylated As and inorganic As species detected. © The Royal Society of Chemistry.
-
ItemA study of lead uptake and distribution in horns from lead-dosed goats using synchrotron radiation-induced micro X-ray fluorescence elemental imaging( 2019) Tehrani,MW ; Huang,R ; Diana Filipa Guimarães ; Smieska,L ; Woll,A ; Parsons,PJ ; 6888Objective: The principal goal of this study was to investigate the uptake and distribution of lead (Pb) in the horns of Pb-dosed goats, and to explore possible links to their historical Pb dosing records. Horn is a keratinized material that grows in discrete increments with the potential to preserve the historical record of past environmental exposures. While previous studies have leveraged this potential to examine environmental and biological phenomena in horns, Pb uptake has never been explored. Methods: Horns were collected post-mortem from three goats that had been previously used to produce blood lead reference materials for the New York State proficiency testing program. The animals were periodically dosed with lead acetate, administered orally in a capsule, over a 5 to 8-year period. Horn cross sections were taken from each animal and analyzed using synchrotron radiation-induced micro X-ray fluorescence spectrometry (SR-µXRF) at the Cornell High Energy Synchrotron Source (CHESS). Results: Elemental distribution maps were obtained by SR-µXRF for Pb, Ca, S, Se, and three other elements (Br, Zn and Cu), with values reported quantitatively as a mass fraction (µg/g for trace elements and mg/g for Ca and S). Accumulations of Pb were clearly visible as a series of narrow “rings” in each of the horn samples analyzed. The elements Ca, S, Br, Zn, and Cu were also detected as discrete rings within each cross-section, with Br strongly correlated with S in the samples examined. A marginal increase in Se may coincide with Pb accumulation in horn cross-sections. Annual mineralization estimates based on the relative distribution of Ca and S were used to establish a tentative timeline for horn growth, with each timeline linked to the pattern of Pb accumulation in the corresponding horn cross-section sample. Conclusions: Following ingestion, absorbed Pb is eventually deposited into caprine horns, resulting in discrete accumulations or “rings.” Elemental mapping by SR-µXRF clearly show Ca-rich layers that vary with annual periodicity, consistent with previous reports of horn mineralization. Localized enrichment of Cu, Zn, Br and S appear to coincide with the keratinized regions related to the annual growth ring pattern in horns. Spatial analysis of horns for Pb accumulation may be useful as a qualitative marker of time-resolved exposures that may reflect specific periods of acute Pb absorption. © 2019 Elsevier GmbH