CRACS - Indexed Articles in Conferences
Permanent URI for this collection
Browse
Browsing CRACS - Indexed Articles in Conferences by Author "AmirHossein Nabizadeh"
Results Per Page
Sort Options
-
ItemLong term goal oriented recommender systems( 2015) José Paulo Leal ; Alípio Jorge ; AmirHossein Nabizadeh ; 5125 ; 4981 ; 6083The main goal of recommender systems is to assist users in finding items of their interest in very large collections. The use of good automatic recommendation promotes customer loyalty and user satisfaction because it helps users to attain their goals. Current methods focus on the immediate value of recommendations and are evaluated as such. This is insufficient for long term goals, either defined by users or by platform managers. This is of interest in recommending learning resources to learn a target concept, and also when a company is organizing a campaign to lead users to buy certain products or moving to a different customer segment. Therefore, we believe that it would be useful to develop recommendation algorithms that promote the goals of users and platform managers (e.g. e-shop manager, e-learning tutor, ministry of culture promotor). Accordingly, we must define appropriate evaluation methodologies and demonstrate the concept on practical cases.
-
ItemLong term goal oriented recommender systems( 2015) AmirHossein Nabizadeh ; Alípio Jorge ; José Paulo LealThe main goal of recommender systems is to assist users in finding items of their interest in very large collections. The use of good automatic recommendation promotes customer loyalty and user satisfaction because it helps users to attain their goals. Current methods focus on the immediate value of recommendations and are evaluated as such. This is insufficient for long term goals, either defined by users or by platform managers. This is of interest in recommending learning resources to learn a target concept, and also when a company is organizing a campaign to lead users to buy certain products or moving to a different customer segment. Therefore, we believe that it would be useful to develop recommendation algorithms that promote the goals of users and platform managers (e.g. e-shop manager, e-learning tutor, ministry of culture promotor). Accordingly, we must define appropriate evaluation methodologies and demonstrate the concept on practical cases.
-
ItemRUTICO: Recommending Successful Learning Paths Under Time Constraints( 2017) José Paulo Leal ; Alípio Jorge ; AmirHossein Nabizadeh ; 5125 ; 4981 ; 6083Nowadays using E-learning platforms such as Intelligent Tutoring Systems (ITS) that support users to learn subjects are quite common. Despite the availability and the advantages of these systems, they ignore the learners' time limitation for learning a subject. In this paper we propose RUTICO, that recommends successful learning paths with respect to a learner's knowledge background and under a time constraint. RUTICO, which is an example of Long Term goal Recommender Systems (LTRS), a.er locating a learner in the course graph, it utilizes a Depth-first search (DFS) algorithm to find all possible paths for a learner given a time restriction. RUTICO also estimates learning time and score for the paths and finally, it recommends a path with the maximum score that satisfies the learner time restriction. In order to evaluate the ability of RUTICO in estimating time and score for paths, we used the Mean Absolute Error and Error. Our results show that we are able to generate a learning path that maximizes a learner's score under a time restriction. © 2017 ACM.