CEGI
Permanent URI for this community
This service focuses its activity on the frontier between Engineering, Management and Social Sciences, in order to identify processes, techniques and efficiency indicators of the institutions. At the heart of this center's strategy is the "problem-driven research" concept, which implies the development of solutions tailored to the needs of each company / institution.
Browse
Browsing CEGI by Author "5964"
Results Per Page
Sort Options
-
ItemConsistent Consolidation Strategies in Grocery Retail Distribution( 2019) Sara Sofia Martins ; Pedro Amorim ; Bernardo Almada-Lobo ; 5964 ; 6061 ; 5428In the food retail sector, maintaining the food quality across the supply chain is of vital importance. The quality of the products is dependent on its storage and transportation conditions and this peculiarity increases the supply chain complexity relatively to other types of retailers. Actually, in this industry there are three types of food supply chains: frozen, chilled and ambient. Moreover, food retailers run different store formats, of different sizes, assortments and sales volume. In this study we research the trade-off between consolidating a range of products in order to perform direct deliveries to the stores versus performing separate delivery routes for products with different transportation requirements. A new consistency dimension is proposed regarding the periodicity that a consolidation strategy is implemented. The aim of this paper is to define a consolidation strategy for the delivery mode planning that allows to smooth the complexity of grocery retail operations. A three-step approach is proposed to tackle a real size problem in a case-study with a major Portuguese grocery retailer. By changing the consolidation strategy with a complete consistent plan the company could reach annual savings of around 4%. © 2019, Springer Nature Switzerland AG.
-
ItemDelivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review( 2018) Sara Sofia Martins ; Pedro Amorim ; Bernardo Almada-Lobo ; 5964 ; 6061 ; 5428In the retail industry, there are multiple products flowing from different distribution centers to brick-and-mortar stores with distinct characteristics. This industry has been suffering radical changes along the years and new market dynamics are making distribution more and more challenging. Consequently, there is a pressure to reduce shipment sizes and increase the delivery frequency. In such a context, defining the most efficient way to supply each store is a critical task. However, the supply chain planning decision that tackles this type of problem, delivery mode planning, is not well defined in the literature. This paper proposes a definition for delivery mode planning and analyzes multiple ways retailers can efficiently supply their brick-and-mortar stores from their distribution centers. The literature addressing this planning problem is reviewed and the main interdependencies with other supply chain planning decisions are discussed. © 2017 Springer Science+Business Media New York
-
ItemIntegrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with Backhauls( 2020) Alexandra Sofia Marques ; Ricardo Ferreira Soares ; Maria João Santos ; Pedro Amorim ; 5964 ; 6816 ; 5581 ; 6917
-
ItemIntegrated planning of inbound and outbound logistics with a Rich Vehicle Routing Problem with backhauls( 2020) Ricardo Ferreira Soares ; Maria João Santos ; Pedro Amorim ; 6917 ; 6816 ; 5964This paper addresses the integration of the planning decisions concerning inbound logistics in an industrial setting (from the suppliers to the mill) and outbound logistics (from the mill to customers). The goal is to find the minimum cost routing plan, which includes the cost-effective outbound and inbound daily routes (OIRs), consisting of a sequence of deliveries of customer orders, pickup of a full truck-load at a supplier, and its delivery to the mill. This study distinguishes between three planning strategies: opportunistic backhauling planning (OBP), integrated inbound and outbound planning (IIOP) and decoupled planning (DIOP), the latter being the commonly used, particularly in the case of the wood-based panel industry under study. From the point of view of process integration, OBP can be considered as an intermediate stage from DIOP to IIOP. The problem is modelled as a Vehicle Routing Problem with Backhauls, enriched with case-specific rules for visiting the backhaul, split deliveries to customers and the use of a heterogeneous fleet. A new fix-and-optimise matheuristic is proposed for this problem, seeking to obtain good quality solutions within a reasonable computational time. The results from its application to the wood-based panel industry in Portugal show that IIOP can help to reduce total costs in about 2.7%, when compared with DIOP, due to better use of the delivery truck and a reduction of the number of dedicated inbound routes. Regarding OBP, fostering the use of OIRs does not necessarily lead to better routing plans than DIOP, as it depends upon a favourable geographical configuration of the set of customers to be visited in a day, specifically, the relative distance between a linehaul that can be visited last in a route, a neighboring backhaul, and a mill. The paper further provides valuable managerial insights on how the routing plan is impacted by the values of business-related model parameters which are set by the planner with some degree of uncertainty. Results suggest that increasing the maximum length of the route will likely have the largest impact in reducing transportation costs. Moreover, increasing the value of a reward paid for visiting a backhaul can foster the percentage of OIR in the optimal routing plan.
-
ItemLoading constraints for a multi-compartment vehicle routing problem( 2018) Sara Sofia Martins ; Ostermeier,M ; Pedro Amorim ; Huebner,A ; 5964 ; 6061Multi-compartment vehicles (MCVs) can deliver several product segments jointly. Separate compartments are necessary as each product segment has its own specific characteristics and segments cannot be mixed during transportation. The size and position of the compartments can be adjusted for each tour with the use of flexible compartments. However, this requires that the compartments can be accessed for loading/unloading. The layout of the compartments is defined by the customer and segment sequence, and it needs to be organized in a way that no blocking occurs during loading/unloading processes. Routing and loading layouts are interdependent for MCVs. This paper addresses such loading/unloading issues raised in the distribution planning when using MCVs with flexible compartments, loading from the rear, and standardized transportation units. The problem can therefore be described as a two-dimensional loading and multi-compartment vehicle routing problem (2L-MCVRP). We address the problem of obtaining feasible MCV loading with minimal routing, loading and unloading costs. We define the loading problem that configures the compartment setup. Consequently, we develop a branch-and-cut (B&C) algorithm as an exact approach and extend a large neighborhood search (LNS) as a heuristic approach. In both cases, we use the loading model in order to verify the feasibility of the tours and to assess the problem as a routing and loading problem. The loading model dictates the cuts to be performed in the B&C, and it is used as a repair mechanism in the LNS. Numerical studies show that the heuristic reaches the optimal solution for small instances and can be applied efficiently to larger problems. Additionally, further tests on large instances enable us to derive general rules regarding the influence of loading constraints. Our results were validated in a case study with a European retailer. We identified that loading constraints matter even for small instances. Feasible loading can often be achieved only through minor changes to the routing solution and therefore with limited additional costs. Further, the importance to integrate loading constraints grows as the problem size increases, especially when a heterogeneous mix of segments is ordered. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature
-
ItemMultiple vehicle synchronisation in a full truck-load pickup and delivery problem: A case-study in the biomass supply chain( 2019) Pedro Amorim ; Ricardo Ferreira Soares ; 5964 ; 6917The search for higher efficiency in transportation planning processes in real life applications is challenging. The synchronisation of different vehicles performing interrelated operations can enforce a better use of vehicle fleets and decrease travelled distances and non-productive times, leading to a reduction of logistics costs. In this work, the full truck-load pickup and delivery problem with multiple vehicle synchronisation (FT-PDP-mVS) is presented. This problem is motivated by a real-life application in the biomass supply chain "hot-system", where it is necessary to simultaneously perform chipping and transportation operations at the forest roadside. The FT-PDP-mVS consists in determining the integrated routes for three distinct types of vehicles, which need to perform interrelated operations with minimum logistics costs. We extend existing studies in synchronisation of multiple routes by acknowledging several synchronisation aspects, such as operations and movement synchronisation. A novel mixed integer programming model (MIP) is presented, along with valid inequalities to tighten the formulation. A solution method approach is developed based on the fix-and-optimise principles under a variable neighbourhood decomposition search. Results of its application to 19 instances based on a real-world case-study demonstrate its performance. For a baseline instance, the synchronisation aspects tackled in this problem allowed for significant gains when compared to the company's current planning approach. Furthermore, the proposed approach can enhance planning and decision making processes by providing valuable insights about the impact of key parameters of biomass logistics over the routing results.
-
ItemSolving the grocery backroom layout problem( 2020) Elsa Marília Silva ; Pires,M ; Pedro Amorim ; 5964 ; 5675
-
ItemSynchronisation in vehicle routing: Classification schema, modelling framework and literature review( 2024) Pedro Amorim ; Ricardo Ferreira Soares ; 5964 ; 6917The practical relevance and challenging nature of the Vehicle Routing Problem (VRP) have motivated the Operations Research community to consider different practical requirements and problem variants throughout the years. However, businesses still face increasingly specific and complex transportation re-quirements that need to be tackled, one of them being synchronisation. No literature contextualises syn-chronisation among other types of problem aspects of the VRP, increasing ambiguity in the nomenclature used by the community. The contributions of this paper originate from a literature review and are three-fold. First, new conceptual and classification schemas are proposed to analyse literature and re-organise different interdependencies that arise in routing decisions. Secondly, a modelling framework is presented based on the proposed schemas. Finally, an extensive literature review identifies future research gaps and opportunities in the field of VRPs with synchronisation.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
-
ItemSynchronisation in vehicle routing: classification schema, modelling framework and literature review( 2023) Ricardo Ferreira Soares ; Marques,A ; Pedro Amorim ; Parragh,SN ; 5964 ; 6917
-
ItemThe time window assignment vehicle routing problem with product dependent deliveries( 2018) Fábio Silva Moreira ; Bernardo Almada-Lobo ; Pedro Amorim ; Luís Guimarães ; da Silva,DP ; 5964 ; 5428 ; 6114 ; 5965