CEGI
Permanent URI for this community
This service focuses its activity on the frontier between Engineering, Management and Social Sciences, in order to identify processes, techniques and efficiency indicators of the institutions. At the heart of this center's strategy is the "problem-driven research" concept, which implies the development of solutions tailored to the needs of each company / institution.
Browse
Browsing CEGI by Author "6061"
Results Per Page
Sort Options
-
ItemConsistent Consolidation Strategies in Grocery Retail Distribution( 2019) Sara Sofia Martins ; Pedro Amorim ; Bernardo Almada-Lobo ; 5964 ; 6061 ; 5428In the food retail sector, maintaining the food quality across the supply chain is of vital importance. The quality of the products is dependent on its storage and transportation conditions and this peculiarity increases the supply chain complexity relatively to other types of retailers. Actually, in this industry there are three types of food supply chains: frozen, chilled and ambient. Moreover, food retailers run different store formats, of different sizes, assortments and sales volume. In this study we research the trade-off between consolidating a range of products in order to perform direct deliveries to the stores versus performing separate delivery routes for products with different transportation requirements. A new consistency dimension is proposed regarding the periodicity that a consolidation strategy is implemented. The aim of this paper is to define a consolidation strategy for the delivery mode planning that allows to smooth the complexity of grocery retail operations. A three-step approach is proposed to tackle a real size problem in a case-study with a major Portuguese grocery retailer. By changing the consolidation strategy with a complete consistent plan the company could reach annual savings of around 4%. © 2019, Springer Nature Switzerland AG.
-
ItemDelivery mode planning for distribution to brick-and-mortar retail stores: discussion and literature review( 2018) Sara Sofia Martins ; Pedro Amorim ; Bernardo Almada-Lobo ; 5964 ; 6061 ; 5428In the retail industry, there are multiple products flowing from different distribution centers to brick-and-mortar stores with distinct characteristics. This industry has been suffering radical changes along the years and new market dynamics are making distribution more and more challenging. Consequently, there is a pressure to reduce shipment sizes and increase the delivery frequency. In such a context, defining the most efficient way to supply each store is a critical task. However, the supply chain planning decision that tackles this type of problem, delivery mode planning, is not well defined in the literature. This paper proposes a definition for delivery mode planning and analyzes multiple ways retailers can efficiently supply their brick-and-mortar stores from their distribution centers. The literature addressing this planning problem is reviewed and the main interdependencies with other supply chain planning decisions are discussed. © 2017 Springer Science+Business Media New York
-
ItemLoading constraints for a multi-compartment vehicle routing problem( 2018) Sara Sofia Martins ; Ostermeier,M ; Pedro Amorim ; Huebner,A ; 5964 ; 6061Multi-compartment vehicles (MCVs) can deliver several product segments jointly. Separate compartments are necessary as each product segment has its own specific characteristics and segments cannot be mixed during transportation. The size and position of the compartments can be adjusted for each tour with the use of flexible compartments. However, this requires that the compartments can be accessed for loading/unloading. The layout of the compartments is defined by the customer and segment sequence, and it needs to be organized in a way that no blocking occurs during loading/unloading processes. Routing and loading layouts are interdependent for MCVs. This paper addresses such loading/unloading issues raised in the distribution planning when using MCVs with flexible compartments, loading from the rear, and standardized transportation units. The problem can therefore be described as a two-dimensional loading and multi-compartment vehicle routing problem (2L-MCVRP). We address the problem of obtaining feasible MCV loading with minimal routing, loading and unloading costs. We define the loading problem that configures the compartment setup. Consequently, we develop a branch-and-cut (B&C) algorithm as an exact approach and extend a large neighborhood search (LNS) as a heuristic approach. In both cases, we use the loading model in order to verify the feasibility of the tours and to assess the problem as a routing and loading problem. The loading model dictates the cuts to be performed in the B&C, and it is used as a repair mechanism in the LNS. Numerical studies show that the heuristic reaches the optimal solution for small instances and can be applied efficiently to larger problems. Additionally, further tests on large instances enable us to derive general rules regarding the influence of loading constraints. Our results were validated in a case study with a European retailer. We identified that loading constraints matter even for small instances. Feasible loading can often be achieved only through minor changes to the routing solution and therefore with limited additional costs. Further, the importance to integrate loading constraints grows as the problem size increases, especially when a heterogeneous mix of segments is ordered. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature