Exploiting the Potential of Electric Vehicles to Improve Operating Conditions in Islanded Grids

No Thumbnail Available
Date
2011
Authors
Carlos Moreira
Pedro Rocha Almeida
Filipe Joel Soares
João Peças Lopes
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
From the studies developed so far, it is a general consensus that Electric Vehicles (EV), when properly managed, can provide many benefits to the grid operation. In the power systems of islands the potential benefits may be even larger. The case of S. Miguel Island, in the Azorean archipelago, may be one of such cases. This island achieves typically an annual peak power of 75 MW and a valley slightly higher than 30 MW. Currently, around 75% of its installed capacity is formed by fuel units, 22% by geothermal units and the rest by small hydro units. Yet, there are numerous unexplored endogenous resources in this place, especially geothermal and wind power, which cannot be used due to technical restrictions. Geothermal is limited by the valley load as the involved technology is not suited for load following, even with very small ramp rates. Wind power requires sufficient conventional spinning reserve to be safely integrated due to the variability of the wind resource. High EV integration, with an adequate charging management, would then increase base load allowing further geothermal and a reduced need for conventional spinning reserves. This paper evaluates the benefits of the presence of EV as controllable loads performing frequency control in a scenario with abundant wind resource availability, where a sudden loss of wind power production over a short period of time occurs. Ultimately, this work will show that S. Miguel power system would benefit from the presence of EV. A
Description
Keywords
Citation