Please use this identifier to cite or link to this item:
Title: Forgetting mechanisms for scalable collaborative filtering
Authors: Alípio Jorge
João Marques Silva
Issue Date: 2012
Abstract: Collaborative filtering (CF) has been an important subject of research in the past few years. Many achievements have been made in this field, however, many challenges still need to be faced, mainly related to scalability and predictive ability. One important issue is how to deal with old and potentially obsolete data in order to avoid unnecessary memory usage and processing time. Our proposal is to use forgetting mechanisms. In this paper, we present and evaluate the impact of two forgetting mechanisms - sliding windows and fading factors - in user-based and item-based CF algorithms with implicit binary ratings under a scenario of abrupt change. Our results suggest that forgetting mechanisms reduce time and space requirements, improving scalability, while not significantly affecting the predictive ability of the algorithms.
metadata.dc.type: article
Appears in Collections:LIAAD - Articles in International Journals

Files in This Item:
File Description SizeFormat 
PS-07918.pdf783.04 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.