Please use this identifier to cite or link to this item:
Title: The semantics of movie metadata: Enhancing user profiling for hybrid recommendation
Authors: Márcio Micael Soares
Paula Viana
Issue Date: 2017
Abstract: In movie/TV collaborative recommendation approaches, ratings users gave to already visited content are often used as the only input to build profiles. However, users might have rated equally the same movie but due to different reasons: either because of its genre, the crew or the director. In such cases, this rating is insufficient to represent in detail users’ preferences and it is wrong to conclude that they share similar tastes. The work presented in this paper tries to solve this ambiguity by exploiting hidden semantics in metadata elements. The influence of each of the standard description elements (actors, directors and genre) in representing user’s preferences is analyzed. Simulations were conducted using Movielens and Netflix datasets and different evaluation metrics were considered. The results demonstrate that the implemented approach yields significant advantages both in terms of improving performance, as well as in dealing with common limitations of standard collaborative algorithm. © Springer International Publishing AG 2017.
metadata.dc.type: conferenceObject
Appears in Collections:CTM - Articles in International Conferences

Files in This Item:
File Description SizeFormat 
P-00M-QBC.pdf762.16 kBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.