Forecasting and setting power system operating reserves
    
  
 
  
    
    
        Forecasting and setting power system operating reserves
    
  
Files
Date
    
    
        2017
    
  
Authors
  Manuel Matos
  Ricardo Jorge Bessa
  Botterud,A
  Zhou,Z
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
    
    
        The system operator is responsible for maintaining a constant balance between generation and load to keep frequency at the nominal value. This fundamental objective is achieved with upward (e.g., synchronized and nonsynchronized generation units) and downward (e.g., demand response, storage) reserve capacity. The system operator needs to define, in advance, the reserve capacity requirements that mitigate the risk of imbalances due to forecast errors and unplanned outages of generation units. The research trend is to apply probabilistic methodologies for setting the reserve requirements based on uncertainty forecasts for renewable generation and load, as well as a probabilistic modeling of units' outages. This chapter describes two probabilistic methods, which share a common modeling framework, for quantifying risk and reserve requirements in two types of electricity markets: (1) sequential markets with the reserves market after the energy market clearing and (2) cooptimization (or joint market clearing) of energy and reserves. Two case studies with real data are presented to illustrate the application of both methodologies.