A Multi-Relational Model for Depression Relapse in Patients with Bipolar Disorder
A Multi-Relational Model for Depression Relapse in Patients with Bipolar Disorder
Date
2015
Authors
Salvini,R
Da Silva Dias,R
Lafer,B
Inês Dutra
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bipolar Disorder (BD) is a chronic and disabling disease that usually appears around 20 to 30 years old. Patients who suffer with BD may struggle for years to achieve a correct diagnosis, and only 50% of them generally receive adequate treatment. In this work we apply a machine learning technique called Inductive Logic Programming (ILP) in order to model relapse and no-relapse patients in a first attempt in this area to improve diagnosis and optimize psychiatrists' time spent with patients. We use ILP because it is well suited for our multi-relational dataset and because a human can easily interpret the logical rules produced. Our classifiers can predict relapse cases with 92% Recall and no-relapse cases with 73% Recall. The rules and variable theories generated by ILP reproduce some findings from the scientific literature. The generated multi-relational models can be directly interpreted by clinicians and researchers, and also open space to research biological mechanisms and interventions. © 2015 IMIA and IOS Press.