BacalhauNet: A tiny CNN for lightning-fast modulation classification
BacalhauNet: A tiny CNN for lightning-fast modulation classification
dc.contributor.author | Jose Rosa | en |
dc.contributor.author | Daniel Granhao | en |
dc.contributor.author | Guilherme Carvalho | en |
dc.contributor.author | Tiago Gon?alves | en |
dc.contributor.author | Monica Figueiredo | en |
dc.contributor.author | Luis Conde Bento | en |
dc.contributor.author | Nuno Miguel Paulino | en |
dc.contributor.author | Luis M. Pessoa | en |
dc.contributor.other | 5802 | en |
dc.date.accessioned | 2023-05-05T09:32:38Z | |
dc.date.available | 2023-05-05T09:32:38Z | |
dc.date.issued | 2022 | en |
dc.description.abstract | <jats:p>Deep learning methods have been shown to be competitive solutions for modulation classification tasks, but suffer from being computationally expensive, limiting their use on embedded devices. We propose a new deep neural network architecture which employs known structures, depth-wise separable convolution and residual connections, as well as a compression methodology, which combined lead to a tiny and fast algorithm for modulation classification. Our compressed model won the first place in ITU's AI/ML in 5G Challenge 2021, achieving 61.73? compression over the challenge baseline and being over 2.6? better than the second best submission. The source code of this work is publicly available at github.com/ITU-AI- ML-in-5G-Challenge/ITU-ML5G-PS-007-BacalhauNet.</jats:p> | en |
dc.identifier | P-00Y-5GV | en |
dc.identifier.uri | http://dx.doi.org/10.52953/fywt4006 | en |
dc.identifier.uri | https://repositorio.inesctec.pt/handle/123456789/13831 | |
dc.language | eng | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | BacalhauNet: A tiny CNN for lightning-fast modulation classification | en |
dc.type | en | |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- P-00Y-5GV.pdf
- Size:
- 4.43 MB
- Format:
- Adobe Portable Document Format
- Description: