BacalhauNet: A tiny CNN for lightning-fast modulation classification

dc.contributor.author Jose Rosa en
dc.contributor.author Daniel Granhao en
dc.contributor.author Guilherme Carvalho en
dc.contributor.author Tiago Gon?alves en
dc.contributor.author Monica Figueiredo en
dc.contributor.author Luis Conde Bento en
dc.contributor.author Nuno Miguel Paulino en
dc.contributor.author Luis M. Pessoa en
dc.contributor.other 5802 en
dc.date.accessioned 2023-05-05T09:32:38Z
dc.date.available 2023-05-05T09:32:38Z
dc.date.issued 2022 en
dc.description.abstract <jats:p>Deep learning methods have been shown to be competitive solutions for modulation classification tasks, but suffer from being computationally expensive, limiting their use on embedded devices. We propose a new deep neural network architecture which employs known structures, depth-wise separable convolution and residual connections, as well as a compression methodology, which combined lead to a tiny and fast algorithm for modulation classification. Our compressed model won the first place in ITU's AI/ML in 5G Challenge 2021, achieving 61.73? compression over the challenge baseline and being over 2.6? better than the second best submission. The source code of this work is publicly available at github.com/ITU-AI- ML-in-5G-Challenge/ITU-ML5G-PS-007-BacalhauNet.</jats:p> en
dc.identifier P-00Y-5GV en
dc.identifier.uri http://dx.doi.org/10.52953/fywt4006 en
dc.identifier.uri https://repositorio.inesctec.pt/handle/123456789/13831
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title BacalhauNet: A tiny CNN for lightning-fast modulation classification en
dc.type en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00Y-5GV.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description: