Stacked denoising autoencoders for the automatic recognition of microglial cells' state

dc.contributor.author Sofia Silva Fernandes en
dc.contributor.author Sousa,R en
dc.contributor.author Socodato,R en
dc.contributor.author Silva,L en
dc.date.accessioned 2018-01-05T12:43:50Z
dc.date.available 2018-01-05T12:43:50Z
dc.date.issued 2016 en
dc.description.abstract We present the first study for the automatic recognition of microglial cells' state using stacked denoising autoencoders. Microglia has a pivotal role as sentinel of neuronal diseases where its state (resting, transition or active) is indicative of what is occurring in the Central Nervous System. In this work we delve on different strategies to best learn a stacked denoising autoencoder for that purpose and show that the transition state is the most hard to recognize while an accuracy of approximately 64% is obtained with a dataset of 45 images. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5513
dc.language eng en
dc.relation 6883 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Stacked denoising autoencoders for the automatic recognition of microglial cells' state en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00M-6YY.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description: