Labeled Homomorphic Encryption - Scalable and Privacy-Preserving Processing of Outsourced Data

Thumbnail Image
Date
2017
Authors
Manuel Barbosa
Fiore,D
Catalano,D
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In privacy-preserving processing of outsourced data a Cloud server stores data provided by one or multiple data providers and then is asked to compute several functions over it. We propose an efficient methodology that solves this problem with the guarantee that a honest-but-curious Cloud learns no information about the data and the receiver learns nothing more than the results. Our main contribution is the proposal and efficient instantiation of a new cryptographic primitive called Labeled Homomorphic Encryption (labHE). The fundamental insight underlying this new primitive is that homomorphic computation can be significantly accelerated whenever the program that is being computed over the encrypted data is known to the decrypter and is not secret—previous approaches to homomorphic encryption do not allow for such a trade-off. Our realization and implementation of labHE targets computations that can be described by degree-two multivariate polynomials. As an application, we consider privacy preserving Genetic Association Studies (GAS), which require computing risk estimates from features in the human genome. Our approach allows performing GAS efficiently, non interactively and without compromising neither the privacy of patients nor potential intellectual property of test laboratories. © 2017, Springer International Publishing AG.
Description
Keywords
Citation