Deep Convolutional Artery/Vein Classification of Retinal Vessels

dc.contributor.author Maria Inês Meyer en
dc.contributor.author Adrian Galdran en
dc.contributor.author Costa,P en
dc.contributor.author Ana Maria Mendonça en
dc.contributor.author Aurélio Campilho en
dc.contributor.other 6825 en
dc.contributor.other 6071 en
dc.contributor.other 6381 en
dc.contributor.other 6835 en
dc.date.accessioned 2019-03-04T15:19:42Z
dc.date.available 2019-03-04T15:19:42Z
dc.date.issued 2018 en
dc.description.abstract The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of 96 % on large caliber vessels, and an overall accuracy of 84 %. © 2018, Springer International Publishing AG, part of Springer Nature. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/8303
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-93000-8_71 en
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Deep Convolutional Artery/Vein Classification of Retinal Vessels en
dc.type Publication en
dc.type conferenceObject en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00N-ZM3.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format
Description: