A biased random-key genetic algorithm for the minimization of open stacks problem

dc.contributor.author José Fernando Gonçalves en
dc.contributor.author Resende,MGC en
dc.contributor.author Costa,MD en
dc.date.accessioned 2018-01-03T11:39:14Z
dc.date.available 2018-01-03T11:39:14Z
dc.date.issued 2016 en
dc.description.abstract This paper describes a biased random-key genetic algorithm (BRKGA) for the minimization of the open stacks problem (MOSP). The MOSP arises in a production system scenario, and consists of determining a sequence of cutting patterns that minimize the maximum number of open stacks during the cutting process. The proposed approach combines a BRKGA and a local search procedure for generating the sequence of cutting patterns. A novel fitness function for evaluating the quality of the solutions is also developed. Computational tests are presented using available instances taken from the literature. The high quality of the solutions obtained validate the proposed approach. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5384
dc.identifier.uri http://dx.doi.org/10.1111/itor.12109 en
dc.language eng en
dc.relation 5730 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title A biased random-key genetic algorithm for the minimization of open stacks problem en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00G-VJN.pdf
Size:
368.08 KB
Format:
Adobe Portable Document Format
Description: