Automatic Generation of Chord Progressions with an Artificial Immune System

dc.contributor.author Navarro,M en
dc.contributor.author Marcelo Freitas Caetano en
dc.contributor.author Gilberto Bernardes Almeida en
dc.contributor.author de Castro,LN en
dc.contributor.author Manuel Corchado,JM en
dc.date.accessioned 2017-12-13T13:03:08Z
dc.date.available 2017-12-13T13:03:08Z
dc.date.issued 2015 en
dc.description.abstract Chord progressions are widely used in music. The automatic generation of chord progressions can be challenging because it depends on many factors, such as the musical context, personal preference, and aesthetic choices. In this work, we propose a penalty function that encodes musical rules to automatically generate chord progressions. Then we use an artificial immune system (AIS) to minimize the penalty function when proposing candidates for the next chord in a sequence. The AIS is capable of finding multiple optima in parallel, resulting in several different chords as appropriate candidates. We performed a listening test to evaluate the chords subjectively and validate the penalty function. We found that chords with a low penalty value were considered better candidates than chords with higher penalty values. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/3979
dc.identifier.uri http://dx.doi.org/10.1007/978-3-319-16498-4_16 en
dc.language eng en
dc.relation 6231 en
dc.relation 6065 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Automatic Generation of Chord Progressions with an Artificial Immune System en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00G-219.pdf
Size:
486.4 KB
Format:
Adobe Portable Document Format
Description: