Random rules from data streams

dc.contributor.author Ezilda Duarte Almeida en
dc.contributor.author Kosina,P en
dc.contributor.author João Gama en
dc.date.accessioned 2018-01-03T10:55:37Z
dc.date.available 2018-01-03T10:55:37Z
dc.date.issued 2013 en
dc.description.abstract Existing works suggest that random inputs and random features produce good results in classification. In this paper we study the problem of generating random rule sets from data streams. One of the most interpretable and flexible models for data stream mining prediction tasks is the Very Fast Decision Rules learner (VFDR). In this work we extend the VFDR algorithm using random rules from data streams. The proposed algorithm generates several sets of rules. Each rule set is associated with a set of Natt attributes. The proposed algorithm maintains all properties required when learning from stationary data streams: online and any-time classification, processing each example once. Copyright 2013 ACM. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5377
dc.identifier.uri http://dx.doi.org/10.1145/2480362.2480518 en
dc.language eng en
dc.relation 5120 en
dc.relation 5296 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Random rules from data streams en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-008-B2J.pdf
Size:
164.05 KB
Format:
Adobe Portable Document Format
Description: