Multi-criteria evaluation of class binarization and feature selection in tear film lipid layer classification

dc.contributor.author Mendez,R en
dc.contributor.author Beatriz Remeseiro López en
dc.contributor.author Peteiro Barral,D en
dc.contributor.author Penedo,MG en
dc.date.accessioned 2018-01-16T19:54:17Z
dc.date.available 2018-01-16T19:54:17Z
dc.date.issued 2013 en
dc.description.abstract Dry eye is an increasingly popular syndrome in modern society which can be diagnosed through an automatic technique for tear film lipid layer classification. Previous studies related to this multi-class problem lack of analysis focus on class binarization techniques, feature selection and artificial neural networks. Also, all of them just use the accuracy of the machine learning algorithms as performance measure. This paper presents a methodology to evaluate different performance measures over these unexplored areas using the multiple criteria decision making method called TOPSIS. The results obtained demonstrate the effectiveness of the methodology proposed in this research. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6530
dc.language eng en
dc.relation 6485 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Multi-criteria evaluation of class binarization and feature selection in tear film lipid layer classification en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00G-DNE.pdf
Size:
127.6 KB
Format:
Adobe Portable Document Format
Description: