Time-adaptive kernel density forecast: a new method for wind power uncertainty modeling

dc.contributor.author Emil Constantinescu en
dc.contributor.author Ricardo Jorge Bessa en
dc.contributor.author Jean Sumaili en
dc.contributor.author Vladimiro Miranda en
dc.contributor.author Audun Botterud en
dc.contributor.author Jianhui Wang en
dc.date.accessioned 2017-11-17T11:46:31Z
dc.date.available 2017-11-17T11:46:31Z
dc.date.issued 2011 en
dc.description.abstract This paper reports new contributions to the advancement of wind power uncertainty forecasting beyond the current state-of-the-art. A new kernel density forecast (KDF) method applied to the wind power problem is described. The method is based on the Nadaraya-Watson estimator, and a time-adaptive version of the algorithm is also proposed. Results are presented for different case-studies and compared with linear and splines quantile regression. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/3209
dc.language eng en
dc.relation 208 en
dc.relation 5164 en
dc.relation 4882 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Time-adaptive kernel density forecast: a new method for wind power uncertainty modeling en
dc.type conferenceObject en
dc.type Publication en
Files