Towards using Probabilities and Logic to Model Regulatory Networks

dc.contributor.author António José Gonçalves en
dc.contributor.author Ong,I en
dc.contributor.author Lewis,JA en
dc.contributor.author Vítor Santos Costa en
dc.date.accessioned 2017-11-20T14:29:26Z
dc.date.available 2017-11-20T14:29:26Z
dc.date.issued 2014 en
dc.description.abstract Transcriptional regulation plays an important role in every cellular decision. Unfortunately, understanding the dynamics that govern how a cell will respond to diverse environmental cues is difficult using intuition alone. We introduce logic-based regulation models based on state-of-the-art work on statistical relational learning, and validate our approach by using it to analyze time-series gene expression data of the Hog1 pathway. Our results show that plausible regulatory networks can be learned from time series gene expression data using a probabilistic logical model. Hence, network hypotheses can be generated from existing gene expression data for use by experimental biologists. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/3710
dc.identifier.uri http://dx.doi.org/10.1109/cbms.2014.9 en
dc.language eng en
dc.relation 5129 en
dc.relation 5574 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Towards using Probabilities and Logic to Model Regulatory Networks en
dc.type conferenceObject en
dc.type Publication en
Files