A depth-map approach for automatic mice behavior recognition

dc.contributor.author João Pedro Monteiro en
dc.contributor.author Hélder Filipe Oliveira en
dc.contributor.author Aguiar,P en
dc.contributor.author Jaime Cardoso en
dc.date.accessioned 2018-01-11T18:55:42Z
dc.date.available 2018-01-11T18:55:42Z
dc.date.issued 2014 en
dc.description.abstract Animal behavior assessment plays an important role in basic and clinical neuroscience. Although assessing the higher functional level of the nervous system is already possible, behavioral tests are extremely complex to design and analyze. Animal's responses are often evaluated manually, making it subjective, extremely time consuming, poorly reproducible and potentially fallible. The main goal of the present work is to evaluate the use of consumer depth cameras, such as the Microsoft's Kinect, for detection of behavioral patterns of mice. The hypothesis is that the depth information, should enable a more feasible and robust method for automatic behavior recognition. Thus, we introduce our depth-map based approach comprising mouse segmentation, body-like per-frame feature extraction and per-frame classification given temporal context, to prove the usability of this methodology. © 2014 IEEE. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5939
dc.identifier.uri http://dx.doi.org/10.1109/icip.2014.7025458 en
dc.language eng en
dc.relation 3889 en
dc.relation 5075 en
dc.relation 5568 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title A depth-map approach for automatic mice behavior recognition en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00G-C2M.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description: