On Predicting the Taxi-Passenger Demand: A Real-Time Approach

dc.contributor.author Luís Moreira Matias en
dc.contributor.author João Gama en
dc.contributor.author Michel Ferreira en
dc.contributor.author João Mendes Moreira en
dc.contributor.author Damas,L en
dc.date.accessioned 2018-01-03T10:39:02Z
dc.date.available 2018-01-03T10:39:02Z
dc.date.issued 2013 en
dc.description.abstract Informed driving is becoming a key feature to increase the sustainability of taxi companies. Some recent works are exploring the data broadcasted by each vehicle to provide live information for decision making. In this paper, we propose a method to employ a learning model based on historical GPS data in a real-time environment. Our goal is to predict the spatiotemporal distribution of the Taxi-Passenger demand in a short time horizon. We did so by using learning concepts originally proposed to a well-known online algorithm: the perceptron [1]. The results were promising: we accomplished a satisfactory performance to output the next prediction using a short amount of resources. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5362
dc.identifier.uri http://dx.doi.org/10.1007/978-3-642-40669-0_6 en
dc.language eng en
dc.relation 5120 en
dc.relation 5450 en
dc.relation 5320 en
dc.relation 6535 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title On Predicting the Taxi-Passenger Demand: A Real-Time Approach en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-008-EFG.pdf
Size:
826.39 KB
Format:
Adobe Portable Document Format
Description: