CLUSTERING-BASED WIND POWER SCENARIO REDUCTION TECHNIQUE

dc.contributor.author A. Botterud en
dc.contributor.author Hrvoje Keko en
dc.contributor.author Vladimiro Miranda en
dc.contributor.author J. Wang en
dc.contributor.author Jean Sumaili en
dc.date.accessioned 2017-11-16T13:21:35Z
dc.date.available 2017-11-16T13:21:35Z
dc.date.issued 2011 en
dc.description.abstract This paper describes a new technique aimed at representing wind power forecasting uncertainty by a set of discrete scenarios able to characterize the probability density function of the wind power forecast. From an initial large set of sampled scenarios, a reduced discrete set of representative or focal scenarios associated with a probability of occurrence is created using clustering techniques. The advantage is that this allows reducing the computational burden in stochastic models that require scenario representation. The validity of the reduction methodology has been tested in a simplified Unit Commitment (UC) problem. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2211
dc.language eng en
dc.relation 208 en
dc.relation 5164 en
dc.relation 4811 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title CLUSTERING-BASED WIND POWER SCENARIO REDUCTION TECHNIQUE en
dc.type conferenceObject en
dc.type Publication en
Files