Probabilistic clustering of interval data

dc.contributor.author Paula Brito en
dc.contributor.author Pedro Duarte Silva,APD en
dc.contributor.author Dias,JG en
dc.date.accessioned 2017-12-20T22:36:01Z
dc.date.available 2017-12-20T22:36:01Z
dc.date.issued 2015 en
dc.description.abstract In this paper we address the problem of clustering interval data, adopting a model-based approach. To this purpose, parametric models for interval-valued variables are used which consider configurations for the variance-covariance matrix that take the nature of the interval data directly into account. Results, both on synthetic and empirical data, clearly show the well-founding of the proposed approach. The method succeeds in finding parsimonious heterocedastic models which is a critical feature in many applications. Furthermore, the analysis of the different data sets made clear the need to explicitly consider the intrinsic variability present in interval data. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/4587
dc.identifier.uri http://dx.doi.org/10.3233/ida-150718 en
dc.language eng en
dc.relation 4984 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Probabilistic clustering of interval data en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00A-CFZ.pdf
Size:
535.56 KB
Format:
Adobe Portable Document Format
Description: