SkILL - a Stochastic Inductive Logic Learner
SkILL - a Stochastic Inductive Logic Learner
dc.contributor.author | Joana Côrte-Real | en |
dc.contributor.author | Theofrastos Mantadelis | en |
dc.contributor.author | Inês Dutra | en |
dc.contributor.author | Ricardo Rocha | en |
dc.contributor.author | Burnside,E | en |
dc.date.accessioned | 2018-01-04T16:17:38Z | |
dc.date.available | 2018-01-04T16:17:38Z | |
dc.date.issued | 2015 | en |
dc.description.abstract | Probabilistic Inductive Logic Programming (PILP) is a relatively unexplored area of Statistical Relational Learning which extends classic Inductive Logic Programming (ILP). Within this scope, we introduce SkILL, a Stochastic Inductive Logic Learner, which takes probabilistic annotated data and produces First Order Logic (FOL) theories. Data in several domains such as medicine and bioinformatics have an inherent degree of uncertainty, and because SkILL can handle this type of data, the models produced for these areas are closer to reality. SkILL can then use probabilistic data to extract non-trivial knowledge from databases, and also address efficiency issues by introducing an efficient search strategy for finding hypotheses in PILP environments. SkILL's capabilities are demonstrated using a real world medical dataset in the breast cancer domain. | en |
dc.identifier.uri | http://repositorio.inesctec.pt/handle/123456789/5463 | |
dc.identifier.uri | http://dx.doi.org/10.1109/icmla.2015.159 | en |
dc.language | eng | en |
dc.relation | 5128 | en |
dc.relation | 6034 | en |
dc.relation | 5749 | en |
dc.relation | 5139 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | SkILL - a Stochastic Inductive Logic Learner | en |
dc.type | conferenceObject | en |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1