Learning model rules from high-speed data streams

dc.contributor.author Ezilda Duarte Almeida en
dc.contributor.author Carlos Ferreira en
dc.contributor.author João Gama en
dc.date.accessioned 2018-01-03T10:39:13Z
dc.date.available 2018-01-03T10:39:13Z
dc.date.issued 2013 en
dc.description.abstract Decision rules are one of the most expressive languages for machine learning. In this paper we present Adaptive Model Rules (AMRules), the first streaming rule learning algorithm for regression problems. In AMRules the antecedent of a rule is a conjunction of conditions on the attribute values, and the consequent is a linear combination of attribute values. Each rule in AMRules uses a Page-Hinkley test to detect changes in the process generating data and react to changes by pruning the rule set. In the experimental section we report the results of AMRules on benchmark regression problems, and compare the performance of our algorithm with other streaming regression algorithms. © 2013 IJCAI. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5367
dc.language eng en
dc.relation 5340 en
dc.relation 5120 en
dc.relation 5296 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Learning model rules from high-speed data streams en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-008-KWT.pdf
Size:
445.98 KB
Format:
Adobe Portable Document Format
Description: