Predictive Sequence Miner in ILP Learning

dc.contributor.author Vítor Santos Costa en
dc.contributor.author Carlos Ferreira en
dc.contributor.author João Gama en
dc.date.accessioned 2017-11-16T13:46:00Z
dc.date.available 2017-11-16T13:46:00Z
dc.date.issued 2012 en
dc.description.abstract This work presents an optimized version of XMuSer, an ILP based framework suitable to explore temporal patterns available in multi-relational databases. XMuSer's main idea consists of exploiting frequent sequence mining, an efficient method to learn temporal patterns in the form of sequences. XMuSer framework efficiency is grounded on a new coding methodology for temporal data and on the use of a predictive sequence miner. The frameworks selects and map the most interesting sequential patterns into a new table, the sequence relation. In the last step of our framework, we use an ILP algorithm to learn a classification theory on the enlarged relational database that consists of the original multi-relational database and the new sequence relation. We evaluate our framework by addressing three classification problems and map each one of three different types of sequential patterns: frequent, closed or maximal. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2508
dc.language eng en
dc.relation 5340 en
dc.relation 5120 en
dc.relation 5120 en
dc.relation 5129 en
dc.relation 5129 en
dc.relation 5340 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Predictive Sequence Miner in ILP Learning en
dc.type bookPart en
dc.type Publication en
Files