Concept Drift Detection with Clustering via Statistical Change Detection Methods

dc.contributor.author Sakamoto,Y en
dc.contributor.author Fukui,K en
dc.contributor.author João Gama en
dc.contributor.author Nicklas,D en
dc.contributor.author Moriyama,K en
dc.contributor.author Numao,M en
dc.date.accessioned 2018-01-03T10:36:11Z
dc.date.available 2018-01-03T10:36:11Z
dc.date.issued 2015 en
dc.description.abstract We propose a concept drift detection method utilizing statistical change detection in which a drift detection method and the Page-Hinkley test are employed. Our method enables users to annotate clustering results without constructing a model of drift detection for every input. In our experiments using synthetic data, we evaluated our proposed method on the basis of detection delay and false detection, also revealed relations between the degree of drift and parameters of the method. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5324
dc.identifier.uri http://dx.doi.org/10.1109/kse.2015.19 en
dc.language eng en
dc.relation 5120 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Concept Drift Detection with Clustering via Statistical Change Detection Methods en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00K-AN3.pdf
Size:
572.31 KB
Format:
Adobe Portable Document Format
Description: