Automatic Cyst Detection in OCT Retinal Images Combining Region Flooding and Texture Analysis

dc.contributor.author Gonzalez,A en
dc.contributor.author Beatriz Remeseiro López en
dc.contributor.author Ortega,M en
dc.contributor.author Penedo,MG en
dc.contributor.author Charlon,P en
dc.date.accessioned 2018-01-16T17:06:53Z
dc.date.available 2018-01-16T17:06:53Z
dc.date.issued 2013 en
dc.description.abstract In this work Optical Coherence Tomography (OCT) retinal images are automatically processed to detect the presence of cysts. The methodology is composed by three phases: region of interest where cysts will be searched is delimited; a watershed algorithm is applied to find all the possible regions in the image which might conform cystic structures; finally, texture analysis is performed in each region from previous phase to final classification. Results show that accuracy achieved with this method is over 80%. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/6478
dc.identifier.uri http://dx.doi.org/10.1109/cbms.2013.6627825 en
dc.language eng en
dc.relation 6485 en
dc.rights info:eu-repo/semantics/embargoedAccess en
dc.title Automatic Cyst Detection in OCT Retinal Images Combining Region Flooding and Texture Analysis en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00G-DNG.pdf
Size:
491.48 KB
Format:
Adobe Portable Document Format
Description: