Tackling Class Imbalance with Ranking

dc.contributor.author Cruz,R en
dc.contributor.author Kelwin Alexander Correia en
dc.contributor.author Jaime Cardoso en
dc.contributor.author Pinto Costa,JFP en
dc.date.accessioned 2018-01-21T15:55:45Z
dc.date.available 2018-01-21T15:55:45Z
dc.date.issued 2016 en
dc.description.abstract In classification, when there is a disproportion in the number of observations in each class, the data is said to be class imbalance. Class imbalance is pervasive in real world applications of data classification and has been the focus of much research. The minority class contributes too little to the decision boundary because the learning process learns from each observation in isolation. In this paper, we discuss the application of learning pairwise rankers as a solution to class imbalance. We compare ranking models to alternatives from the literature. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/7181
dc.identifier.uri http://dx.doi.org/10.1109/ijcnn.2016.7727469 en
dc.language eng en
dc.relation 3889 en
dc.relation 5958 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Tackling Class Imbalance with Ranking en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00M-8F6.pdf
Size:
239.49 KB
Format:
Adobe Portable Document Format
Description: