Entropy Measures vs. Kolmogorov Complexity

dc.contributor.author André Souto en
dc.contributor.author Luís Filipe Antunes en
dc.contributor.author Andreia Teixeira en
dc.contributor.author Armando Matos en
dc.date.accessioned 2017-11-16T14:21:34Z
dc.date.available 2017-11-16T14:21:34Z
dc.date.issued 2011 en
dc.description.abstract Kolmogorov complexity and Shannon entropy are conceptually different measures. However, for any recursive probability distribution, the expected value of Kolmogorov complexity equals its Shannon entropy, up to a constant. We study if a similar relationship holds for R´enyi and Tsallis entropies of order α, showing that it only holds for α = 1. Regarding a time-bounded analogue relationship, we show that, for some distributions we have a similar result. We prove that, for universal time-bounded distribution mt(x), Tsallis and Rényi entropies converge if and only if α is greater than 1. We also establish the uniform continuity of these entropies. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2961
dc.identifier.uri http://dx.doi.org/10.3390/e13030595 en
dc.language eng en
dc.relation 5649 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Entropy Measures vs. Kolmogorov Complexity en
dc.type article en
dc.type Publication en
Files