Predicting Ramp Events with a Stream-based HMM framework
Predicting Ramp Events with a Stream-based HMM framework
dc.contributor.author | João Gama | en |
dc.contributor.author | Audun Botterud | en |
dc.contributor.author | Vladimiro Miranda | en |
dc.contributor.author | Vítor Santos Costa | en |
dc.contributor.author | Carlos Ferreira | en |
dc.date.accessioned | 2017-11-16T13:45:55Z | |
dc.date.available | 2017-11-16T13:45:55Z | |
dc.date.issued | 2012 | en |
dc.description.abstract | The motivation for this work is the study and prediction of wind ramp events occurring in a large-scale wind farm located in the US Midwest. In this paper we introduce the SHRED framework, a stream-based model that continuously learns a discrete HMM model from wind power and wind speed measurements. We use a supervised learning algorithm to learn HMM parameters from discretized data, where ramp events are HMM states and discretized wind speed data are HMM observations. The discretization of the historical data is obtained by running the SAX algorithm over the rst order variations in the original signal. SHRED updates the HMM using the most recent historical data and includes a forgetting mechanism to model natural time dependence in wind patterns. To forecast ramp events we use recent wind speed forecasts and the Viterbi algorithm, that incrementally nds the most probable ramp event to occur. | en |
dc.identifier.uri | http://repositorio.inesctec.pt/handle/123456789/2507 | |
dc.language | eng | en |
dc.relation | 208 | en |
dc.relation | 5340 | en |
dc.relation | 208 | en |
dc.relation | 208 | en |
dc.relation | 5120 | en |
dc.relation | 5120 | en |
dc.relation | 5120 | en |
dc.relation | 5129 | en |
dc.relation | 5129 | en |
dc.relation | 5129 | en |
dc.relation | 5340 | en |
dc.relation | 5340 | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.title | Predicting Ramp Events with a Stream-based HMM framework | en |
dc.type | bookPart | en |
dc.type | Publication | en |