Predicting Ramp Events with a Stream-based HMM framework

dc.contributor.author João Gama en
dc.contributor.author Audun Botterud en
dc.contributor.author Vladimiro Miranda en
dc.contributor.author Vítor Santos Costa en
dc.contributor.author Carlos Ferreira en
dc.date.accessioned 2017-11-16T13:45:55Z
dc.date.available 2017-11-16T13:45:55Z
dc.date.issued 2012 en
dc.description.abstract The motivation for this work is the study and prediction of wind ramp events occurring in a large-scale wind farm located in the US Midwest. In this paper we introduce the SHRED framework, a stream-based model that continuously learns a discrete HMM model from wind power and wind speed measurements. We use a supervised learning algorithm to learn HMM parameters from discretized data, where ramp events are HMM states and discretized wind speed data are HMM observations. The discretization of the historical data is obtained by running the SAX algorithm over the rst order variations in the original signal. SHRED updates the HMM using the most recent historical data and includes a forgetting mechanism to model natural time dependence in wind patterns. To forecast ramp events we use recent wind speed forecasts and the Viterbi algorithm, that incrementally nds the most probable ramp event to occur. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/2507
dc.language eng en
dc.relation 208 en
dc.relation 5340 en
dc.relation 208 en
dc.relation 208 en
dc.relation 5120 en
dc.relation 5120 en
dc.relation 5120 en
dc.relation 5129 en
dc.relation 5129 en
dc.relation 5129 en
dc.relation 5340 en
dc.relation 5340 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Predicting Ramp Events with a Stream-based HMM framework en
dc.type bookPart en
dc.type Publication en
Files