A framework for hardware cellular genetic algorithms: An application to spectrum allocation in cognitive radio
A framework for hardware cellular genetic algorithms: An application to spectrum allocation in cognitive radio
Date
2013
Authors
Dos Santos,PV
José Carlos Alves
João Canas Ferreira
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The genetic algorithm (GA) is an optimization metaheuristic that relies on the evolution of a set of solutions (population) according to genetically inspired transformations. In the variant of this technique called cellular GA, the evolution is done separately for subgroups of solutions. This paper describes a hardware framework capable of efficiently supporting custom accelerators for this metaheuristic. This approach builds a regular array of problem-specific processing elements (PEs), which perform the genetic evolution, connected to shared memories holding the local subpopulations. To assist the design of the custom PEs, a methodology based on highlevel synthesis from C++ descriptions is used. The proposed architecture was applied to a spectrum allocation problem in cognitive radio networks. For an array of 5×5 PEs in a Virtex-6 FPGA, the results show a minimum speedup of 22× compared to a software version running on a PC and a speedup near 2000× over a MicroBlaze soft processor. © 2013 IEEE.