A Survey on Concept Drift Adaptation

dc.contributor.author João Gama en
dc.contributor.author Zliobaite,I en
dc.contributor.author Bifet,A en
dc.contributor.author Pechenizkiy,M en
dc.contributor.author Bouchachia,A en
dc.date.accessioned 2018-01-03T10:39:37Z
dc.date.available 2018-01-03T10:39:37Z
dc.date.issued 2014 en
dc.description.abstract Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this article, we characterize adaptive learning processes; categorize existing strategies for handling concept drift; overview the most representative, distinct, and popular techniques and algorithms; discuss evaluation methodology of adaptive algorithms; and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state of the art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts, and practitioners. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5370
dc.identifier.uri http://dx.doi.org/10.1145/2523813 en
dc.language eng en
dc.relation 5120 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title A Survey on Concept Drift Adaptation en
dc.type article en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-009-DVX.pdf
Size:
720.46 KB
Format:
Adobe Portable Document Format
Description: