HASLab - Indexed Articles in Journals
Permanent URI for this collection
Browse
Browsing HASLab - Indexed Articles in Journals by Author "5597"
Results Per Page
Sort Options
-
ItemA large-scale empirical study on mobile performance: energy, run-time and memory( 2024) João Alexandre Saraiva ; 5597Software performance concerns have been attracting research interest at an increasing rate, especially regarding energy performance in non-wired computing devices. In the context of mobile devices, several research works have been devoted to assessing the performance of software and its underlying code. One important contribution of such research efforts is sets of programming guidelines aiming at identifying efficient and inefficient programming practices, and consequently to steer software developers to write performance-friendly code.Despite recent efforts in this direction, it is still almost unfeasible to obtain universal and up-to-date knowledge regarding software and respective source code performance. Namely regarding energy performance, where there has been growing interest in optimizing software energy consumption due to the power restrictions of such devices. There are still many difficulties reported by the community in measuring performance, namely in large-scale validation and replication. The Android ecosystem is a particular example, where the great fragmentation of the platform, the constant evolution of the hardware, the software platform, the development libraries themselves, and the fact that most of the platform tools are integrated into the IDE's GUI, makes it extremely difficult to perform performance studies based on large sets of data/applications. In this paper, we analyze the execution of a diversified corpus of applications of significant magnitude. We analyze the source-code performance of 1322 versions of 215 different Android applications, dynamically executed with over than 27900 tested scenarios, using state-of-the-art black-box testing frameworks with different combinations of GUI inputs. Our empirical analysis allowed to observe that semantic program changes such as adding functionality and repairing bugfixes are the changes more associated with relevant impact on energy performance. Furthermore, we also demonstrate that several coding practices previously identified as energy-greedy do not replicate such behavior in our execution context and can have distinct impacts across several performance indicators: runtime, memory and energy consumption. Some of these practices include some performance issues reported by the Android Lint and Android SDK APIs. We also provide evidence that the evaluated performance indicators have little to no correlation with the performance issues' priority detected by Android Lint. Finally, our results allowed us to demonstrate that there are significant differences in terms of performance between the most used libraries suited for implementing common programming tasks, such as HTTP communication, JSON manipulation, image loading/rendering, among others, providing a set of recommendations to select the most efficient library for each performance indicator. Based on the conclusions drawn and in the extension of the developed work, we also synthesized a set of guidelines that can be used by practitioners to replicate energy studies and build more efficient mobile software.
-
ItemMemoized zipper-based attribute grammars and their higher order extension( 2019) Martins,P ; Viera,M ; João Alexandre Saraiva ; Pardo,A ; João Paulo Fernandes ; 5597 ; 5631Attribute grammars are a powerfull, well-known formalism to implement and reason about programs which, by design, are conveniently modular. In this work we focus on a state of the art zipper-based embedding of classic attribute grammars and higher-order attribute grammars. We improve their execution performance through controlling attribute (re)evaluation by means of memoization techniques. We present the results of our optimizations by comparing their impact in various implementations of different, well-studied, attribute grammars and their Higher-Order extensions. © 2018 Elsevier B.V.
-
ItemSPELLing out energy leaks: Aiding developers locate energy inefficient code( 2020) Carcao,T ; João Alexandre Saraiva ; João Paulo Fernandes ; Cunha,J ; Rui Alexandre Pereira ; Marco Linhares Couto ; 5597 ; 6187 ; 5974 ; 5631Although hardware is generally seen as the main culprit for a computer's energy usage, software too has a tremendous impact on the energy spent. Unfortunately, there is still not enough support for software developers so they can make their code more energy-aware. This paper proposes a technique to detect energy inefficient fragments in the source code of a software system. Test cases are executed to obtain energy consumption measurements, and a statistical method, based on spectrum-based fault localization, is introduced to relate energy consumption to the source code. The result of our technique is an energy ranking of source code fragments pointing developers to possible energy leaks in their code. This technique was implemented in the SPELL toolkit. Finally, in order to evaluate our technique, we conducted an empirical study where we asked participants to optimize the energy efficiency of a software system using our tool, while also having two other groups using no tool assistance and a profiler, respectively. We showed statistical evidence that developers using our technique were able to improve the energy efficiency by 43% on average, and even out performing a profiler for energy optimization. © 2019 Elsevier Inc.
-
ItemUnifying Parsing and Reflective Printing for Fully Disambiguated Grammars( 2020) Ko,HS ; Hu,ZJ ; João Alexandre Saraiva ; Martins,P ; Zhang,YZ ; Zhu,ZR ; 5597Language designers usually need to implement parsers and printers. Despite being two closely related programs, in practice they are often designed separately, and then need to be revised and kept consistent as the language evolves. It will be more convenient if the parser and printer can be unified and developed in a single program, with their consistency guaranteed automatically. Furthermore, in certain scenarios (like showing compiler optimisation results to the programmer), it is desirable to have a more powerful reflective printer that, when an abstract syntax tree corresponding to a piece of program text is modified, can propagate the modification to the program text while preserving layouts, comments, and syntactic sugar. To address these needs, we propose a domain-specific language BiYacc, whose programs denote both a parser and a reflective printer for a fully disambiguated context-free grammar. BiYacc is based on the theory of bidirectional transformations, which helps to guarantee by construction that the generated pairs of parsers and reflective printers are consistent. Handling grammatical ambiguity is particularly challenging: we propose an approach based on generalised parsing and disambiguation filters, which produce all the parse results and (try to) select the only correct one in the parsing direction; the filters are carefully bidirectionalised so that they also work in the printing direction and do not break the consistency between the parsers and reflective printers. We show that BiYacc is capable of facilitating many tasks such as Pombrio and Krishnamurthi's 'resugaring', simple refactoring, and language evolution.