HASLab - Indexed Articles in Journals

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 5 of 210
  • Item
    Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms
    ( 2025) Luís Paulo Santos ; 6969
    Adaptive protocols enable the construction of more efficient state preparation circuits in variational quantum algorithms (VQAs) by utilizing data obtained from the quantum processor during the execution of the algorithm. This idea originated with Adaptive Derivative-Assembled Problem-Tailored variational quantum eigensolver (ADAPT-VQE), an algorithm that iteratively grows the state preparation circuit operator by operator, with each new operator accompanied by a new variational parameter, and where all parameters acquired thus far are optimized in each iteration. In ADAPT-VQE and other adaptive VQAs that followed it, it has been shown that initializing parameters to their optimal values from the previous iteration speeds up convergence and avoids shallow local traps in the parameter landscape. However, no other data from the optimization performed at one iteration is carried over to the next. In this work, we propose an improved quasi-Newton optimization protocol specifically tailored to adaptive VQAs. The distinctive feature in our proposal is that approximate second derivatives of the cost function are recycled across iterations in addition to optimal parameter values. We implement a quasi-Newton optimizer where an approximation to the inverse Hessian matrix is continuously built and grown across the iterations of an adaptive VQA. The resulting algorithm has the flavor of a continuous optimization where the dimension of the search space is augmented when the gradient norm falls below a given threshold. We show that this inter-optimization exchange of second-order information leads the approximate Hessian in the state of the optimizer to be consistently closer to the exact Hessian. As a result, our method achieves a superlinear convergence rate even in situations where the typical implementation of a quasi-Newton optimizer converges only linearly. Our protocol decreases the measurement costs in implementing adaptive VQAs on quantum hardware as well as the runtime of their classical simulation.
  • Item
    Towards Quantum Ray Tracing
    ( 2025) Luís Paulo Santos ; 6969
    Rendering on conventional computers is capable of generating realistic imagery, but the computational complexity of these light transport algorithms is a limiting factor of image synthesis. Quantum computers have the potential to significantly improve rendering performance through reducing the underlying complexity of the algorithms behind light transport. This article investigates hybrid quantum-classical algorithms for ray tracing, a core component of most rendering techniques. Through a practical implementation of quantum ray tracing in a 3D environment, we show quantum approaches provide a quadratic improvement in query complexity compared to the equivalent classical approach. Based on domain specific knowledge, we then propose algorithms to significantly reduce the computation required for quantum ray tracing through exploiting image space coherence and a principled termination criteria for quantum searching. We show results obtained using a simulator for both Whitted style ray tracing, and for accelerating ray tracing operations when performing classical Monte Carlo integration for area lights and indirect illumination.
  • Item
    Exploiting Trusted Execution Environments and Distributed Computation for Genomic Association Tests
    ( 2025) Cláudia Vanessa Brito ; 7516
    Breakthroughs in sequencing technologies led to an exponential growth of genomic data, providing novel biological insights and therapeutic applications. However, analyzing large amounts of sensitive data raises key data privacy concerns, specifically when the information is outsourced to untrusted third-party infrastructures for data storage and processing (e.g., cloud computing). We introduce Gyosa, a secure and privacy-preserving distributed genomic analysis solution. By leveraging trusted execution environments (TEEs), Gyosa allows users to confidentially delegate their GWAS analysis to untrusted infrastructures. Gyosa implements a computation partitioning scheme that reduces the computation done inside the TEEs while safeguarding the users' genomic data privacy. By integrating this security scheme in Glow, Gyosa provides a secure and distributed environment that facilitates diverse GWAS studies. The experimental evaluation validates the applicability and scalability of Gyosa, reinforcing its ability to provide enhanced security guarantees. © 2013 IEEE.
  • Item
    Risk Assessment Profiles for Caregiver Burden in Family Caregivers of Persons Living with Alzheimer's Disease: An Exploratory Study with Machine Learning
    ( 2025) Beatriz Cepa ; Cláudia Vanessa Brito ; 8840 ; 7516
    Alzheimer's disease (AD) places a profound global challenge, driven by its escalating prevalence and the multifaceted strain it places on individuals, families, and societies. Family caregivers (FCs), who are pivotal in supporting family members with AD, frequently endure substantial emotional, physical, and psychological demands. To better understand the determinants of family caregiving strain, this study employed machine learning (ML) to develop predictive models identifying factors that contribute to caregiver burden over time. Participants were evaluated across sociodemographic clinical, psychophysiological, and psychological domains at baseline (T1; N = 130), six months (T2; N = 114), and twelve months (T3; N = 92). Results revealed three distinct risk profiles, with the first focusing on T2 data, highlighting the importance of distress, forgiveness, age, and heart rate variability. The second profile integrated T1 and T2 data, emphasizing additional factors like family stress. The third profile combined T1 and T2 data with sociodemographic and clinical features, underscoring the importance of both assessment moments on distress at T2 and forgiveness at T1 and T2, as well as family stress at T1. By employing computational methods, this research uncovers nuanced patterns in caregiver burden that conventional statistical approaches might overlook. Key drivers include psychological factors (distress, forgiveness), physiological markers (heart rate variability), contextual stressors (familial dynamics, sociodemographic disparities). The insights revealed enable early identification of FCs at higher risk of burden, paving the way for personalized interventions. Such strategies are urgently needed as AD rates rise globally, underscoring the imperative to safeguard both patients and the caregivers who support them.
  • Item
    Promoting sustainable and personalized travel behaviors while preserving data privacy
    ( 2025) Cláudia Vanessa Brito ; Tânia Esteves ; João Tiago Paulo ; 7516 ; 7401 ; 5621
    Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private. This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.