CRIIS
Permanent URI for this community
This service develops advanced solutions in automation and industrial robotics, including handlers and mobile robots, and promotes the integration of control intelligent systems and sensing.
Browse
Browsing CRIIS by Author "5153"
Results Per Page
Sort Options
-
ItemMap-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform( 2019) Héber Miguel Sobreira ; António Paulo Moreira ; Paulo José Costa ; Farias,PCMA ; José Lima ; Luís Freitas Rocha ; Sousa,I ; Carlos Miguel Costa ; 6164 ; 5153 ; 5156 ; 5157 ; 5364 ; 5424The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics, such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover, we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to perform point cloud registration 5 to 9 times faster. © 2018 Springer Science+Business Media B.V., part of Springer Nature
-
ItemOmnidirectional robot modeling and simulation( 2020) Sandro Augusto Magalhães ; António Paulo Moreira ; Paulo José Costa ; 5157 ; 5153 ; 7481A robots simulation system is a basis need for any robotics application. With it, developers teams of robots can test their algorithms and make initial calibrations without risk of damage to the real robots, assuring safety. However, build these simulation environments is usually a time-consuming work, and when considering robot fleets, the simulation reveals to be computing expensive. With it, developers building teams of robots can test their algorithms and make initial calibrations without risk of damage to the real robots, assuring safety. An omnidirectional robot from the 5DPO robotics soccer team served to test this approach. The modeling issue was divided into two steps: modeling the motor's non-linear features and modeling the general behavior of the robot. A proper fitting of the robot was reached, considering the velocity robot's response. © 2020 IEEE.
-
ItemOptiOdom: a Generic Approach for Odometry Calibration of Wheeled Mobile Robots( 2022) Ricardo Barbosa Sousa ; Marcelo Petry ; Paulo José Costa ; António Paulo Moreira ; 5153 ; 5157 ; 5240 ; 7908Odometry calibration adjusts the kinematic parameters or directly the robot's model to improve the wheeled odometry accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive, Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the literature implemented in the article are available in GitHub as an open-source repository.