CRAS
Permanent URI for this community
This performs research and development activities in autonomous robotic systems, mobile robotics and multi-robot mobile systems for inspection, monitoring and mapping, with applications in security, energy, environment, aquaculture, oceanography, marine biology, resource extraction, among other sectors. These activities are supported by research in perception, navigation, control, localization, coordination, and automatic data acquisition and processing.
Browse
Browsing CRAS by Author "5238"
Results Per Page
Sort Options
-
ItemDART - A portable deep water hovering AUV( 2017) Aníbal Matos ; Bruno Miguel Ferreira ; Almeida,RM ; Nuno Cruz ; 5158 ; 5238 ; 5155Autonomous Underwater Vehicles are remarkable machines that revolutionized the collection of data at sea. There are many examples of highly operational man-portable vehicles for shallow waters, but there was no similar solution for deep water operations. This paper describes the development of a portable, modular, hovering AUV for deep water operations. The vehicle has little over 50kg, 2.4m of length, and a depth rating of 4000m. The first version of the vehicle has been assembled, it has gone through the initial tests in water tanks, and it is being prepared for the first operations at sea. © 2017 Marine Technology Society.
-
ItemDevelopment of a Dynamic Model for Twin Hull ASVs( 2018) André Filipe Coelho ; Bruno Miguel Ferreira ; Vitor Hugo Pinto ; Nuno Cruz ; 7259 ; 6852 ; 5238 ; 5155 ; 6599
-
ItemGuidance of an Autonomous Surface Vehicle for Underwater Navigation Aid( 2018) Nuno Cruz ; Sousa,JP ; Bruno Miguel Ferreira ; 5238 ; 5155Unmanned Underwater Vehicles (UUVs), such as Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) are versatile tools, suitable for many activities in different fields, and have seen an increase in usage, making them an area of interest in the study of robotics. The performance of any underwater vehicle in any given task is deeply affected by the precision of its localization system. The main challenge in underwater localization is the significant attenuation of any Radio Frequency (RF) signal underwater, which prevents the use of many common location methods such as the Global Positioning System (GPS). Many methods have been studied for the localization of UUVs, including the use of acoustic beacons. One of these methods is the use of a single moving beacon to obtain acoustic ranges, as opposed to a stationary single beacon, which restricts the UUV's trajectory or multiple beacons, involving more hardware, complicating missions' logistics and increasing costs. In this paper, a guidance algorithm based on the Fisher Information Matrix is proposed for an Autonomous Surface Vehicle to serve as a beacon vehicle and aid in the navigation of a UUV. The approach performances are assessed by means of simulations of the complete system under realistic conditions. © 2018 IEEE.
-
ItemREX 16-Robotic Exercises 2016 Multi-robot field trials( 2019) Marques,F ; Bruno Miguel Ferreira ; Aníbal Matos ; Lobo,V ; Marques,MM ; Mendonca,R ; Ramalho,T ; Castelao,I ; Simoes,N ; 5238 ; 5158Nowadays, one of the problems associated with Unmanned Systems is the gap between research community and end-users. In order to emend this problem, the Portuguese Navy Research Center (CINAV) conducts the REX 2016 (Robotic Exercises). This paper describes the trials that were presented in this exercise, divided in two phases. The first phase happened at the Naval Base in Lisbon, with the support of divers and RHIBs (Rigid-Hulled Inflatable Boats), and the second phase, also with divers' support, at the coast of Lisbon-Cascais. It counted with many participants and research groups, including INESC-TEC, UNINOVA, TEKEVER and UAVISION. There are several advantages of doing this exercise, including for the Portuguese Navy, but also for partners. For the Navy, because it is an opportunity of being in contact with recent market technologies and researches. On the other hand, it is an opportunity for the partners to test their systems in a real environment, which usually is a difficult action to accomplish. Therefore, the paper describes three of the most relevant experiments: underwater docking stations, UAV and USV cooperation and Tracking targets from UAVs.