Please use this identifier to cite or link to this item:
Title: Perception of Entangled Tubes for Automated Bin Picking
Authors: Leão,G
Carlos Miguel Costa
Issue Date: 2020
Abstract: Bin picking is a challenging problem common to many industries, whose automation will lead to great economic benefits. This paper presents a method for estimating the pose of a set of randomly arranged bent tubes, highly subject to occlusions and entanglement. The approach involves using a depth sensor to obtain a point cloud of the bin. The algorithm begins by filtering the point cloud to remove noise and segmenting it using the surface normals. Tube sections are then modeled as cylinders that are fitted into each segment using RANSAC. Finally, the sections are combined into complete tubes by adopting a greedy heuristic based on the distance between their endpoints. Experimental results with a dataset created with a Zivid sensor show that this method is able to provide estimates with high accuracy for bins with up to ten tubes. Therefore, this solution has the potential of being integrated into fully automated bin picking systems. © 2020, Springer Nature Switzerland AG.
metadata.dc.type: Publication
Appears in Collections:CRIIS - Articles in International Conferences

Files in This Item:
File Description SizeFormat 
P-00R-X95.pdf3.4 MBAdobe PDFThumbnail

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.