Please use this identifier to cite or link to this item:
Title: Wind Power Trading under Uncertainty in LMP Markets
Authors: Jean Sumaili
Ricardo Jorge Bessa
Hrvoje Keko
Vladimiro Miranda
Audun Botterud
Jianhui Wang
Zhi Zhou
Issue Date: 2012
Abstract: This paper presents a new model for optimal trading of wind power in day-ahead (DA) electricity markets under uncertainty in wind power and prices. The model considers settlement mechanisms in markets with locational marginal prices (LMPs), where wind power is not necessarily penalized from deviations between DA schedule and real-time (RT) dispatch. We use kernel density estimation to produce a probabilistic wind power forecast, whereas uncertainties in DA and RT prices are assumed to be Gaussian. Utility theory and conditional value at risk (CVAR) are used to represent the risk preferences of the wind power producers. The model is tested on real-world data from a large-scale wind farm in the United States. Optimal DA bids are derived under different assumptions for risk preferences and deviation penalty schemes. The results show that in the absence of a deviation penalty, the optimal bidding strategy is largely driven by price expectations. A deviation penalty brings the bid closer to
metadata.dc.type: article
Appears in Collections:CPES - Indexed Articles in Journals

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.13 MBAdobe PDFView/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.