Please use this identifier to cite or link to this item:
Title: Comparing state-of-the-art regression methods for long term travel time prediction
Authors: João Mendes Moreira
Jorge Freire de Sousa
Alípio Jorge
Issue Date: 2012
Abstract: Long-term travel time prediction (TTP) can be an important planning tool for both freight transport and public transport companies. In both cases it is expected that the use of long-term TTP can improve the quality of the planned services by reducing the error between the actual and the planned travel times. However, for reasons that we try to stretch out along this paper, long-term TTP is almost not mentioned in the scientific literature. In this paper we discuss the relevance of this study and compare three non-parametric state-of-the-art regression methods: Projection Pursuit Regression (PPR), Support Vector Machine (SVM) and Random Forests (RF). For each one of these methods we study the best combination of input parameters. We also study the impact of different methods for the pre-processing tasks (feature selection, example selection and domain values definition) in the accuracy of those algorithms. We use bus travel time's data from a bus dispatch system. From an off-the-shelf p
metadata.dc.type: article
Appears in Collections:LIAAD - Articles in International Journals

Files in This Item:
File Description SizeFormat 
PS-08365.pdf2.21 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.