Filling The Gap in Quality Assessment of Video Object Tracking

No Thumbnail Available
Luís Corte Real
Pedro Miguel Carvalho
Jaime Cardoso
Journal Title
Journal ISSN
Volume Title
Current evaluation methods either rely heavily on reference information manually annotated or, by completely avoiding human input, provide only a rough evaluation of the performance of video object tracking algorithms. The main objective of this paper is to present a novel approach to the problem of evaluating video object tracking algorithms. It is proposed to use different types of reference information and the combination of heterogeneous metrics for the purpose of approximating the ideal error. This will enable a significant decrease of the required reference information, thus bridging the gap between metrics with different requirements concerning this type of data. As a result, evaluation frameworks can aggregate the benefits from individual approaches while overcoming their weaknesses, providing a flexible and powerful tool to assess and characterize the behavior of the tracking algorithms.