Probabilistic solar power forecasting in smart grids using distributed information

Thumbnail Image
Date
2015
Authors
Ricardo Jorge Bessa
Trindade,A
Silva,CSP
Vladimiro Miranda
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The deployment of Smart Grid technologies opens new opportunities to develop new forecasting and optimization techniques. The growth of solar power penetration in distribution grids imposes the use of solar power forecasts as inputs in advanced grid management functions. This paper proposes a new forecasting algorithm for 6 h ahead based on the vector autoregression framework, which combines distributed time series information collected by the Smart Grid infrastructure. Probabilistic forecasts are generated for the residential solar photovoltaic (PV) and secondary substation levels. The test case consists of 44 micro-generation units and 10 secondary substations from the Smart Grid pilot in Evora, Portugal. The benchmark model is the well-known autoregressive forecasting method (univariate approach). The average improvement in terms of root mean square error (point forecast evaluation) and continuous ranking probability score (probabilistic forecast evaluation) for the first 3 lead-times was between 8% and 12%, and between 1.4% and 5.9%, respectively. (C) 2015 Published by Elsevier Ltd.
Description
Keywords
Citation