Impacts of plug-in electric vehicles integration in distribution networks under different charging strategies

Thumbnail Image
Filipe Joel Soares
Pedro Pereira Barbeiro
Clara Sofia Gouveia
João Peças Lopes
Journal Title
Journal ISSN
Volume Title
The uncertainties related to when and where Plug-in Electric Vehicles (PEVs) will charge in the future requires the development of stochastic based approaches to identify the corresponding load scenarios. Such tools can be used to enhance existing system operators planning techniques, allowing them to obtain additional knowledge on the impacts of a new type of load, so far unknown or negligible to the power systems, the PEVs battery charging. This chapter presents a tool developed to evaluate the steady state impacts of integrating PEVs in distribution networks. It incorporates several PEV models, allowing estimating their charging impacts in a given network, during a predefined period, when different charging strategies are adopted (non-controlled charging, multiple tariff policies and controlled charging). It uses a stochastic model to simulate PEVs movement in a geographic region and a Monte Carlo method to create different scenarios of PEVs charging. It allows calculating the maximum number of PEVs that can be safely integrated in a given network and the changes provoked by PEVs in the load diagrams, voltage profiles, lines loading and energy losses. Additionally, the tool can also be used to quantify the critical mass (percentage) of PEV owners that need to adhere to controlled charging schemes in order to enable the safe operation of distribution networks. © Springer Science+Business Media Singapore 2015.