Please use this identifier to cite or link to this item:
Title: Quality-Aware Reactive Programming for the Internet of Things
Authors: José Paiva Proença
Carlos Baquero
Issue Date: 2017
Abstract: The reactive paradigm recently became very popular in user-interface development: updates — such as the ones from the mouse, keyboard, or from the network — can trigger a chain of computations organised in a dependency graph, letting the underlying engine control the scheduling of these computations. In the context of the Internet of Things (IoT), typical applications deploy components in distributed nodes and link their interfaces, employing a publish-subscribe architecture. The paradigm for Distributed Reactive Programming marries these two concepts, treating each distributed component as a reactive computation. However, existing approaches either require expensive synchronisation mechanisms or they do not support pipelining, i.e., allowing multiple “waves” of updates to be executed in parallel. We propose Quarp (Quality-Aware Reactive Programming), a scalable and light-weight mechanism aimed at the IoT to orchestrate components triggered by updates of data-producing components or of aggregating components. This mechanism appends meta-information to messages between components capturing the context of the data, used to dynamically monitor and guarantee useful properties of the dynamic applications. These include the so-called glitch freedom, time synchronisation, and geographical proximity. We formalise Quarp using a simple operational semantics, provide concrete examples of useful instances of contexts, and situate our approach in the realm of distributed reactive programming. © 2017, IFIP International Federation for Information Processing.
metadata.dc.type: conferenceObject
Appears in Collections:HASLab - Articles in International Conferences

Files in This Item:
File Description SizeFormat 
P-00N-3QR.pdf486.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.