Please use this identifier to cite or link to this item:
Title: A Methodology for Improving Tear Film Lipid Layer Classification
Authors: Beatriz Remeseiro López
Bolon Canedo,V
Peteiro Barral,D
Alonso Betanzos,A
Guijarro Berdinas,B
Sanchez Marono,N
Issue Date: 2014
Abstract: Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming. In this paper we propose a general methodology to the automatic classification of tear film lipid layer, using color and texture information to characterize the image and feature selection methods to reduce the processing time. The adequacy of the proposed methodology was demonstrated since it achieves classification rates over 97% while maintaining robustness and provides unbiased results. Also, it can be applied in real time, and so allows important time savings for the experts.
metadata.dc.type: article
Appears in Collections:Non INESC TEC publications - Indexed Articles in Journals

Files in This Item:
File Description SizeFormat 
  Restricted Access
997.81 kBAdobe PDFThumbnail
View/Open Request a copy

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.