A Scalable Load Forecasting System for Low Voltage Grids

dc.contributor.author Marisa Mendonça Reis en
dc.contributor.author Garcia,A en
dc.contributor.author Ricardo Jorge Bessa en
dc.date.accessioned 2018-01-05T19:23:07Z
dc.date.available 2018-01-05T19:23:07Z
dc.date.issued 2017 en
dc.description.abstract A recent research trend is driven to increase the monitoring and control capabilities of low voltage networks. This paper describes a probabilistic forecasting methodology based on kernel density estimation and that makes use of distributed computing techniques to create a highly scalable forecasting system for LV networks. The results show that the proposed algorithm outperforms three benchmark models (one for point forecast and two for probabilistic forecasts) and demonstrate the applicability of the distributed in-memory computing solution for a practical operational scenario. The ultimate goal is to integrate information about net-load forecasts in power flow optimization frameworks for low voltage networks in order to solve technical constraints with the available home energy management system flexibility. en
dc.identifier.uri http://repositorio.inesctec.pt/handle/123456789/5595
dc.identifier.uri http://dx.doi.org/10.1109/ptc.2017.7980936 en
dc.language eng en
dc.relation 4882 en
dc.relation 6019 en
dc.rights info:eu-repo/semantics/openAccess en
dc.title A Scalable Load Forecasting System for Low Voltage Grids en
dc.type conferenceObject en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
P-00N-08Z.pdf
Size:
490.49 KB
Format:
Adobe Portable Document Format
Description: