ANN-based scenario generation methodology for stochastic variables of electric power systems
ANN-based scenario generation methodology for stochastic variables of electric power systems
dc.contributor.author | Vagropoulos,SI | en |
dc.contributor.author | Kardakos,EG | en |
dc.contributor.author | Simoglou,CK | en |
dc.contributor.author | Bakirtzis,AG | en |
dc.contributor.author | João Catalão | en |
dc.date.accessioned | 2017-12-22T18:46:42Z | |
dc.date.available | 2017-12-22T18:46:42Z | |
dc.date.issued | 2016 | en |
dc.description.abstract | In this paper a novel scenario generation methodology based on artificial neural networks (ANNs) is proposed. The methodology is flexible and able to generate scenarios for various stochastic variables that are used as input parameters in the stochastic short-term scheduling models. Appropriate techniques for modeling the cross-correlation of the involved stochastic processes and scenario reduction techniques are also incorporated into the proposed approach. The applicability of the methodology is investigated through the creation of electric load, photovoltaic (PV) and wind production scenarios and the performance of the proposed ANN-based methodology is compared to time series-based scenario generation models. Test results on the real-world insular power system of Crete and mainland Greece present the effectiveness of the proposed ANN-based scenario generation methodology. | en |
dc.identifier.uri | http://repositorio.inesctec.pt/handle/123456789/4867 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.epsr.2015.12.020 | en |
dc.language | eng | en |
dc.relation | 6689 | en |
dc.rights | info:eu-repo/semantics/embargoedAccess | en |
dc.title | ANN-based scenario generation methodology for stochastic variables of electric power systems | en |
dc.type | article | en |
dc.type | Publication | en |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- P-00K-3C8.pdf
- Size:
- 2.36 MB
- Format:
- Adobe Portable Document Format
- Description: