Policy gradients using variational quantum circuits

dc.contributor.author Luís Soares Barbosa en
dc.contributor.author Luís Paulo Santos en
dc.contributor.other 5603 en
dc.contributor.other 6969 en
dc.date.accessioned 2023-11-10T08:54:42Z
dc.date.available 2023-11-10T08:54:42Z
dc.date.issued 2023 en
dc.description.abstract Variational quantum circuits are being used as versatile quantum machine learning models. Some empirical results exhibit an advantage in supervised and generative learning tasks. However, when applied to reinforcement learning, less is known. In this work, we considered a variational quantum circuit composed of a low-depth hardware-efficient ansatz as the parameterized policy of a reinforcement learning agent. We show that an epsilon-approximation of the policy gradient can be obtained using a logarithmic number of samples concerning the total number of parameters. We empirically verify that such quantum models behave similarly to typical classical neural networks used in standard benchmarking environments and quantum control, using only a fraction of the parameters. Moreover, we study the barren plateau phenomenon in quantum policy gradients using the Fisher information matrix spectrum. en
dc.identifier P-00Y-713 en
dc.identifier.uri https://repositorio.inesctec.pt/handle/123456789/14517
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Policy gradients using variational quantum circuits en
dc.type en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00Y-713.pdf
Size:
3.26 MB
Format:
Adobe Portable Document Format
Description: