Unimodal and Multimodal Perception for Forest Management: Review and Dataset

dc.contributor.author Daniel Queirós Silva en
dc.contributor.author Filipe Neves Santos en
dc.contributor.author Armando Sousa en
dc.contributor.author Vitor Manuel Filipe en
dc.contributor.author José Boaventura en
dc.contributor.other 5152 en
dc.contributor.other 5552 en
dc.contributor.other 5773 en
dc.contributor.other 8276 en
dc.contributor.other 5843 en
dc.date.accessioned 2023-05-04T09:39:05Z
dc.date.available 2023-05-04T09:39:05Z
dc.date.issued 2021 en
dc.description.abstract Robotics navigation and perception for forest management are challenging due to the existence of many obstacles to detect and avoid and the sharp illumination changes. Advanced perception systems are needed because they can enable the development of robotic and machinery solutions to accomplish a smarter, more precise, and sustainable forestry. This article presents a state-of-the-art review about unimodal and multimodal perception in forests, detailing the current developed work about perception using a single type of sensors (unimodal) and by combining data from different kinds of sensors (multimodal). This work also makes a comparison between existing perception datasets in the literature and presents a new multimodal dataset, composed by images and laser scanning data, as a contribution for this research field. Lastly, a critical analysis of the works collected is conducted by identifying strengths and research trends in this domain. en
dc.identifier P-00V-QXJ en
dc.identifier.uri http://dx.doi.org/10.3390/computation9120127 en
dc.identifier.uri https://repositorio.inesctec.pt/handle/123456789/13712
dc.language eng en
dc.rights info:eu-repo/semantics/openAccess en
dc.title Unimodal and Multimodal Perception for Forest Management: Review and Dataset en
dc.type en
dc.type Publication en
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
P-00V-QXJ.pdf
Size:
14.47 MB
Format:
Adobe Portable Document Format
Description: